Integrating remote sensing with ecology and evolution to advance biodiversity conservation

Remote sensing has transformed the monitoring of life on Earth by revealing spatial and temporal dimensions of biological diversity through structural, compositional and functional measurements of ecosystems. Yet, many aspects of Earth’s biodiversity are not directly quantified by reflected or emitted photons. Inclusive integration of remote sensing with field-based ecology and evolution is needed to fully understand and preserve Earth’s biodiversity. In this Perspective, we argue that multiple data types are necessary for almost all draft targets set by the Convention on Biological Diversity. We examine five key topics in biodiversity science that can be advanced by integrating remote sensing with in situ data collection from field sampling, experiments and laboratory studies to benefit conservation. Lowering the barriers for bringing these approaches together will require global-scale collaboration.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Priority list of biodiversity metrics to observe from space

Article 13 May 2021

Anthropogenic climate and land-use change drive short- and long-term biodiversity shifts across taxa

Article Open access 12 February 2024

Impacts of past abrupt land change on local biodiversity globally

Article Open access 02 December 2019

References

  1. Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science370, 411 (2020). ArticlePubMedGoogle Scholar
  2. Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain.4, 933–942 (2021).
  3. Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol.5, 896–906 (2021). ArticlePubMedGoogle Scholar
  4. Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA114, 7641–7646 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  5. Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep.9, 5636 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  6. Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science366, 255–258 (2019). ArticleCASPubMedGoogle Scholar
  7. Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv.2, 122–131 (2016). ArticleGoogle Scholar
  8. Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv.2, 132–140 (2016). ArticleGoogle Scholar
  9. O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv.1, 19–28 (2015). ArticleGoogle Scholar
  10. Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature523, 403–405 (2015). ArticleCASPubMedGoogle Scholar
  11. Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv.30, 1–14 (2021). ArticleGoogle Scholar
  12. Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv.10, 43–59 (2017). ArticleGoogle Scholar
  13. Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol.9, 1784–1786 (2018). ArticleGoogle Scholar
  14. Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol.3, 401–411 (1994). ArticleCASGoogle Scholar
  15. Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol.19, 497–503 (2004). ArticlePubMedGoogle Scholar
  16. Czyż, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol.10, 7419–7430 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  17. Guillén-Escribà, C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol.11, 10834–10867 (2021). ArticlePubMedPubMed CentralGoogle Scholar
  18. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature470, 479–485 (2011). ArticleCASPubMedGoogle Scholar
  19. Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol.195, 752–765 (2012). ArticlePubMedGoogle Scholar
  20. Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol.228, 494–511 (2020). ArticlePubMedGoogle Scholar
  21. Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology89, 1908–1920 (2008). ArticleCASPubMedGoogle Scholar
  22. Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr.79, 109–126 (2009). ArticleGoogle Scholar
  23. Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA117, 33317–33324 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  24. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science353, aad8466 (2016). ArticlePubMedCASGoogle Scholar
  25. Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool.13, 355–371 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  26. Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat.171, 726–742 (2008). ArticlePubMedGoogle Scholar
  27. Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol.25, 434–441 (2010). ArticlePubMedGoogle Scholar
  28. Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA103, 632–636 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  29. Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography29, 129–151 (2006). ArticleGoogle Scholar
  30. Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ.19, 30–38 (2021). ArticleGoogle Scholar
  31. Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes7, e63850 (2021). ArticleGoogle Scholar
  32. Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA102, 17296–17301 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  33. O’Malley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C43, 58–68 (2012). Google Scholar
  34. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
  35. von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes, Accompagné d’un Tableau Physique des Régions Equinoxiales (Levrault & Schoell, 1807).
  36. Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).
  37. Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).
  38. Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA115, 1837 (2018). ArticlePubMedPubMed CentralCASGoogle Scholar
  39. Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA106, 19637–19643 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  40. Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett.13, 1310–1324 (2010). ArticlePubMedGoogle Scholar
  41. Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst.47, 433–462 (2016). ArticleGoogle Scholar
  42. Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature458, 754–756 (2009). ArticleCASPubMedGoogle Scholar
  43. Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol.203, 1000–1011 (2014). ArticlePubMedGoogle Scholar
  44. Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res.55, 159–167 (2001). ArticleCASGoogle Scholar
  45. Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun.4, 1411 (2013). ArticlePubMedCASGoogle Scholar
  46. Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol.123, 239–257 (1996). ArticleGoogle Scholar
  47. Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data5, 180254 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  48. Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet.6, 361–375 (2005). ArticleCASPubMedGoogle Scholar
  49. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science311, 1283–1287 (2006). ArticleCASPubMedGoogle Scholar
  50. Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett.6, 045501 (2011). ArticleGoogle Scholar
  51. Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ.113, S78–S91 (2009). ArticleGoogle Scholar
  52. Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography37, 711–719 (2014). ArticleGoogle Scholar
  53. Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science323, 785–789 (2009). ArticleCASPubMedGoogle Scholar
  54. Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA97, 9115 (2000). ArticleCASPubMedPubMed CentralGoogle Scholar
  55. Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B281, 20141461 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  56. Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun.10, 5077 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  57. Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B370, 20140002 (2015). ArticleGoogle Scholar
  58. Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B370, 20140011 (2015). ArticleGoogle Scholar
  59. Violle, C. et al. Let the concept of trait be functional! Oikos116, 882–892 (2007). ArticleGoogle Scholar
  60. Lavorel, S. et al. Assessing functional diversity in the field—methodology matters! Funct. Ecol.22, 134–147 (2008). Google Scholar
  61. Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett.9, 741–758 (2006). ArticlePubMedGoogle Scholar
  62. Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol.16, 545–556 (2002). ArticleGoogle Scholar
  63. Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol.14, 1125–1140 (2008). ArticleGoogle Scholar
  64. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature428, 821–827 (2004). ArticleCASPubMedGoogle Scholar
  65. Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA94, 13730–13734 (1997). ArticleCASPubMedPubMed CentralGoogle Scholar
  66. Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA110, 6895–6900 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  67. Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol.26, 119–188 (2020). ArticlePubMedGoogle Scholar
  68. Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ4, e2615v2612 (2016). Google Scholar
  69. Díaz, S. et al. The global spectrum of plant form and function. Nature529, 167–171 (2016). ArticlePubMedCASGoogle Scholar
  70. Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ.158, 15–27 (2015). ArticleGoogle Scholar
  71. Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia180, 951–959 (2016). ArticlePubMedGoogle Scholar
  72. Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans.41, 1347–1354 (2003). ArticleGoogle Scholar
  73. Féret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ.193, 204–215 (2017). ArticleGoogle Scholar
  74. Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf.92, 102174 (2020). Google Scholar
  75. Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).
  76. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature403, 853–858 (2000). ArticleCASPubMedGoogle Scholar
  77. Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodohttps://doi.org/10.5281/zenodo.3261807 (2016).
  78. Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc.15, 20 (2010). ArticleGoogle Scholar
  79. Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun.6, 10122 (2015).
  80. Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science348, 336–340 (2015). ArticleCASPubMedGoogle Scholar
  81. Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems1, 6–18 (1998). ArticleGoogle Scholar
  82. MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature494, 86–89 (2013). ArticleCASPubMedGoogle Scholar
  83. Duncan, B. N. et al. Space‐based observations for understanding changes in the Arctic‐Boreal Zone. Rev. Geophys.58, e2019RG000652 (2020). ArticleGoogle Scholar
  84. Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA71, 76–83 (2007). ArticleGoogle Scholar
  85. Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform.57, 101064 (2020). ArticleGoogle Scholar
  86. Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA112, 9058 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  87. Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol.543, 818–831 (2016).
  88. Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol.53, 625–635 (2016). ArticleGoogle Scholar
  89. Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol.9, 1799–1809 (2018). ArticleGoogle Scholar
  90. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science361, 1108–1111 (2018). ArticleCASPubMedGoogle Scholar
  91. Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol.27, 615–624 (2013). ArticlePubMedGoogle Scholar
  92. Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl.25, 2285–2292 (2015). ArticlePubMedGoogle Scholar
  93. Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc.92, 1539–1569 (2017). ArticlePubMedGoogle Scholar
  94. Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens.166, 15–25 (2020). ArticleGoogle Scholar
  95. Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol.22, 1421–1432 (2016). ArticleGoogle Scholar
  96. van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol.4, 1602–1611 (2020). ArticlePubMedGoogle Scholar
  97. Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol.5, 46–54 (2021). ArticlePubMedGoogle Scholar
  98. Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B288, 20211290 (2021). ArticlePubMedPubMed CentralGoogle Scholar
  99. Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett.12, 443–451 (2009). ArticlePubMedGoogle Scholar
  100. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature413, 591–596 (2001). ArticleCASPubMedGoogle Scholar
  101. Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol.3, 1533–1538 (2019). ArticlePubMedGoogle Scholar
  102. Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).
  103. Kühl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth3, 462–474 (2020). ArticleGoogle Scholar
  104. Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic.57, 395–408 (2015). ArticleGoogle Scholar
  105. Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract.3, e533 (2021). Google Scholar
  106. Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science349, 827–832 (2015). ArticleCASPubMedGoogle Scholar
  107. Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA110, 7978–7985 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  108. McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA107, 7823–7828 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  109. Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev.141, 52–64 (2016). ArticleGoogle Scholar
  110. Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol.27, 136–150 (2021). ArticleGoogle Scholar
  111. Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol.5, 273–284 (2021). ArticlePubMedGoogle Scholar
  112. Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res.39, 125–159 (2014).
  113. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev.13, 5425–5464 (2020). ArticleCASGoogle Scholar
  114. Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain.5, 433–437 (2013). ArticlePubMedPubMed CentralGoogle Scholar
  115. Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett.14, 055003 (2019). ArticleGoogle Scholar
  116. Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science371, eabe8628 (2021). ArticleCASPubMedGoogle Scholar
  117. Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science369, eaay4497 (2020).
  118. Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev.114, 443–455 (2020). ArticleGoogle Scholar
  119. Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy67, 315–326 (2017). ArticleGoogle Scholar
  120. Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc.21, 20 (2016).
  121. Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA116, 1213 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  122. Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene12, 29–41 (2015). ArticleGoogle Scholar
  123. Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ.152, 425–447 (2016). ArticleGoogle Scholar
  124. Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv.51, 101344 (2021). ArticlePubMedPubMed CentralGoogle Scholar
  125. Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).
  126. Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct.60, 102285 (2021). ArticleGoogle Scholar
  127. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature585, 551–556 (2020). ArticlePubMedCASGoogle Scholar
  128. Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain.3, 795–798 (2020). ArticleGoogle Scholar
  129. Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA118, e1919913118 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  130. Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ.247, 111930 (2020). ArticleGoogle Scholar
  131. Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr.68, 121–149 (1998). ArticleGoogle Scholar
  132. Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol.183, 992 (2009). ArticleCASGoogle Scholar
  133. Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B369, 20130194 (2014). ArticleGoogle Scholar
  134. Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol.30, 357–363 (2015). ArticlePubMedGoogle Scholar
  135. Cline, L. C. et al. Resource availability underlies the plant–fungal diversity relationship in a grassland ecosystem. Ecology99, 204–216 (2018). ArticlePubMedGoogle Scholar
  136. Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science304, 1629–1633 (2004). ArticleCASPubMedGoogle Scholar
  137. Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA105, 19780–19785 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  138. Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens.12, 286 (2020).
  139. Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl.24, 1651–1669 (2014). ArticleGoogle Scholar
  140. Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep.10, 6725 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  141. van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol.205, 1406–1423 (2015). ArticlePubMedCASGoogle Scholar
  142. Meireles, J. E., O’Meara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155–172 (Springer, 2020).
  143. Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica56, 455–467 (2018). ArticleCASGoogle Scholar
  144. Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).
  145. Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).
  146. Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens.41, 191–202 (2015). ArticleGoogle Scholar
  147. Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems5, e00803–e00819 (2020).
  148. King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol.19, 75–84 (2011). ArticleCASPubMedGoogle Scholar
  149. Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57–68 (Elsevier, 2019).
  150. Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology85, 2215–2229 (2004). ArticleGoogle Scholar
  151. Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett.11, 1065–1071 (2008). ArticlePubMedGoogle Scholar
  152. Paneque-Gálvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio47, 908–923 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  153. Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986–2014. Telecommun. Policy40, 567–581 (2016). ArticleGoogle Scholar
  154. Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf.8, 261 (2019).
  155. Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain.1, 369–374 (2018). ArticleGoogle Scholar
  156. Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol.3, 51–62 (2020). Google Scholar
  157. Carrino, T. A., Crósta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf.64, 287–300 (2018). Google Scholar
  158. Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens.128, 146–157 (2017). ArticleGoogle Scholar
  159. Turner, W. Sensing biodiversity. Science346, 301–302 (2014). ArticleCASPubMedGoogle Scholar
  160. Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process.10, 1 (2021).
  161. Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ.239, 111626 (2020). ArticleGoogle Scholar
  162. Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519–526 (Springer, 2020).
  163. Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv.8, 212–219 (2016). ArticleGoogle Scholar
  164. Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett.15, 115006 (2020). ArticleGoogle Scholar
  165. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.37, 4302–4315 (2017). ArticleGoogle Scholar
  166. Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ.65, 227–248 (1998). ArticleGoogle Scholar
  167. Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 mhttps://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).
  168. Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences17, 405–422 (2020). ArticleCASGoogle Scholar
  169. Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ.222, 204–214 (2019). ArticleGoogle Scholar
  170. Crameri, F. Scientific colour-maps. Zenodohttps://doi.org/10.5281/zenodo.1287763 (2018).
  171. Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing11, 2563 (2019).
  172. Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol.3, 390–399 (2019). ArticlePubMedGoogle Scholar
  173. Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci.116, G04021 (2011).
  174. Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr.29, 1034–1051 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  175. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience51, 933–938 (2001). ArticleGoogle Scholar
  176. Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data5, 180214 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  177. Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA117, 9906 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  178. Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic.70, 317–339 (2016). ArticleGoogle Scholar
  179. Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun.8, 1441 (2017). ArticlePubMedPubMed CentralCASGoogle Scholar
  180. Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform.5, 318–329 (2010). ArticleGoogle Scholar
  181. Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earth’s interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).
  182. Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett.23, 370–380 (2020). ArticlePubMedGoogle Scholar
  183. Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ.231, 111218 (2019). ArticleGoogle Scholar
  184. Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl.24, 1289–1296 (2014). ArticlePubMedGoogle Scholar
  185. Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens.1, 100002 (2020). ArticleGoogle Scholar
  186. Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot.58, 881–898 (2007). ArticleCASPubMedGoogle Scholar
  187. Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun.10, 4757 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  188. Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol.1, 0194 (2017).
  189. Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv.182, 173–176 (2015). ArticleGoogle Scholar
  190. Pereira, H. M. et al. Essential biodiversity variables. Science339, 277–278 (2013). ArticleCASPubMedGoogle Scholar
  191. Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol.3, 539–551 (2019). ArticlePubMedGoogle Scholar
  192. Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol.2, 1531–1540 (2018). ArticlePubMedGoogle Scholar
  193. Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev.93, 600–625 (2018). ArticlePubMedGoogle Scholar
  194. Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science348, aaa2478 (2015). ArticlePubMedCASGoogle Scholar
  195. Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr.18, 543–552 (2009). ArticleGoogle Scholar
  196. Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol.29, 681–691 (2014). ArticlePubMedGoogle Scholar
  197. Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255–266 (Springer International Publishing, 2020).
  198. Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep.11, 16448 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  199. Papeş, M., Tupayachi, R., Martínez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci.21, 342–354 (2010). ArticleGoogle Scholar
  200. Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ.221, 405–416 (2019). ArticleGoogle Scholar

Acknowledgements

We are presenters at the World Biodiversity Symposia on Earth Observations and Biodiversity. The World Biodiversity Forum held 23–28 February 2020 in Davos (Switzerland) brought together biodiversity scientists and remote sensing experts to address these questions, through the National Aeronautics and Space Administration (NASA) symposium on Using Earth Observations to Understand Changes in Biodiversity and Ecosystem Function (NASA NNH19ZDA001N-TWSC) and the ESA-supported symposium Remote Sensing for Biodiversity Monitoring. Further support was provided by the NSF RCN project Cross-Scale Processes Impacting Biodiversity (DEB-1745562), NSF BII ASCEND (DBI-2021898), NSF DEB-1702379, NSF DEB-1638720, NASA Biodiversity (0048NNH20ZDA001N, 20-BIODIV20-0048, 20-ECOF20-0008), NASA BioSCape (80NSSC21K0086), NASA-CMS (80NSSC17K0710, 80NSSC21K1059), NASA-IDS (80NSSC17K0348) and the NASA Ecological Forecasting Team Applied Sciences Program (80NSSC19K0205). The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, was under a contract with NASA (80NM0018D0004). Government sponsorship is acknowledged. The research conducted at the University of Zurich was supported by the University Research Priority Program in Global Change and Biodiversity. The GOSIF GPP product was obtained from http://globalecology.unh.edu. The artwork in Fig. 1 was drawn by D. Tschanz.

Author information

Authors and Affiliations

  1. Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA Jeannine Cavender-Bares
  2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Fabian D. Schneider & David Schimel
  3. Department of Geography, University of Zurich, Zurich, Switzerland Maria João Santos
  4. Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA Amanda Armstrong & Lola Fatoyinbo
  5. Department of Biology, Ph.D. Program in Biology, City University of New York and The Graduate Center of CUNY, New York City, NY, USA Ana Carnaval
  6. Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA Kyla M. Dahlin
  7. Department of Geographical Sciences, University of Maryland, College Park, MD, USA George C. Hurtt
  8. Department of Forest and Wildlife Ecology, Univ. of Wisconsin-Madison, Madison, WI, USA Philip A. Townsend
  9. Department of Land, Air and Water Resources and the John Muir Institute of the Environment, University of California, Davis, CA, USA Susan L. Ustin
  10. Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, China Zhihui Wang
  11. Department of Geography, University at Buffalo, Buffalo, NY, USA Adam M. Wilson
  1. Jeannine Cavender-Bares