Integrating remote sensing with ecology and evolution to advance biodiversity conservation
Remote sensing has transformed the monitoring of life on Earth by revealing spatial and temporal dimensions of biological diversity through structural, compositional and functional measurements of ecosystems. Yet, many aspects of Earth’s biodiversity are not directly quantified by reflected or emitted photons. Inclusive integration of remote sensing with field-based ecology and evolution is needed to fully understand and preserve Earth’s biodiversity. In this Perspective, we argue that multiple data types are necessary for almost all draft targets set by the Convention on Biological Diversity. We examine five key topics in biodiversity science that can be advanced by integrating remote sensing with in situ data collection from field sampling, experiments and laboratory studies to benefit conservation. Lowering the barriers for bringing these approaches together will require global-scale collaboration.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
133,45 € per year
only 11,12 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Priority list of biodiversity metrics to observe from space
Article 13 May 2021
Anthropogenic climate and land-use change drive short- and long-term biodiversity shifts across taxa
Article Open access 12 February 2024
Impacts of past abrupt land change on local biodiversity globally
Article Open access 02 December 2019
References
- Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science370, 411 (2020). ArticlePubMedGoogle Scholar
- Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain.4, 933–942 (2021).
- Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol.5, 896–906 (2021). ArticlePubMedGoogle Scholar
- Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA114, 7641–7646 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
- Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep.9, 5636 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
- Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science366, 255–258 (2019). ArticleCASPubMedGoogle Scholar
- Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv.2, 122–131 (2016). ArticleGoogle Scholar
- Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv.2, 132–140 (2016). ArticleGoogle Scholar
- O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv.1, 19–28 (2015). ArticleGoogle Scholar
- Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature523, 403–405 (2015). ArticleCASPubMedGoogle Scholar
- Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv.30, 1–14 (2021). ArticleGoogle Scholar
- Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv.10, 43–59 (2017). ArticleGoogle Scholar
- Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol.9, 1784–1786 (2018). ArticleGoogle Scholar
- Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol.3, 401–411 (1994). ArticleCASGoogle Scholar
- Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol.19, 497–503 (2004). ArticlePubMedGoogle Scholar
- Czyż, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol.10, 7419–7430 (2020). ArticlePubMedPubMed CentralGoogle Scholar
- Guillén-Escribà, C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol.11, 10834–10867 (2021). ArticlePubMedPubMed CentralGoogle Scholar
- Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature470, 479–485 (2011). ArticleCASPubMedGoogle Scholar
- Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol.195, 752–765 (2012). ArticlePubMedGoogle Scholar
- Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol.228, 494–511 (2020). ArticlePubMedGoogle Scholar
- Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology89, 1908–1920 (2008). ArticleCASPubMedGoogle Scholar
- Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr.79, 109–126 (2009). ArticleGoogle Scholar
- Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA117, 33317–33324 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
- Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science353, aad8466 (2016). ArticlePubMedCASGoogle Scholar
- Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool.13, 355–371 (2018). ArticlePubMedPubMed CentralGoogle Scholar
- Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat.171, 726–742 (2008). ArticlePubMedGoogle Scholar
- Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol.25, 434–441 (2010). ArticlePubMedGoogle Scholar
- Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA103, 632–636 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
- Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography29, 129–151 (2006). ArticleGoogle Scholar
- Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ.19, 30–38 (2021). ArticleGoogle Scholar
- Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes7, e63850 (2021). ArticleGoogle Scholar
- Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA102, 17296–17301 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
- O’Malley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C43, 58–68 (2012). Google Scholar
- Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
- von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes, Accompagné d’un Tableau Physique des Régions Equinoxiales (Levrault & Schoell, 1807).
- Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).
- Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).
- Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA115, 1837 (2018). ArticlePubMedPubMed CentralCASGoogle Scholar
- Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA106, 19637–19643 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
- Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett.13, 1310–1324 (2010). ArticlePubMedGoogle Scholar
- Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst.47, 433–462 (2016). ArticleGoogle Scholar
- Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature458, 754–756 (2009). ArticleCASPubMedGoogle Scholar
- Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol.203, 1000–1011 (2014). ArticlePubMedGoogle Scholar
- Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res.55, 159–167 (2001). ArticleCASGoogle Scholar
- Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun.4, 1411 (2013). ArticlePubMedCASGoogle Scholar
- Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol.123, 239–257 (1996). ArticleGoogle Scholar
- Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data5, 180254 (2018). ArticlePubMedPubMed CentralGoogle Scholar
- Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet.6, 361–375 (2005). ArticleCASPubMedGoogle Scholar
- Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science311, 1283–1287 (2006). ArticleCASPubMedGoogle Scholar
- Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett.6, 045501 (2011). ArticleGoogle Scholar
- Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ.113, S78–S91 (2009). ArticleGoogle Scholar
- Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography37, 711–719 (2014). ArticleGoogle Scholar
- Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science323, 785–789 (2009). ArticleCASPubMedGoogle Scholar
- Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA97, 9115 (2000). ArticleCASPubMedPubMed CentralGoogle Scholar
- Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B281, 20141461 (2014). ArticlePubMedPubMed CentralGoogle Scholar
- Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun.10, 5077 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
- Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B370, 20140002 (2015). ArticleGoogle Scholar
- Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B370, 20140011 (2015). ArticleGoogle Scholar
- Violle, C. et al. Let the concept of trait be functional! Oikos116, 882–892 (2007). ArticleGoogle Scholar
- Lavorel, S. et al. Assessing functional diversity in the field—methodology matters! Funct. Ecol.22, 134–147 (2008). Google Scholar
- Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett.9, 741–758 (2006). ArticlePubMedGoogle Scholar
- Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol.16, 545–556 (2002). ArticleGoogle Scholar
- Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol.14, 1125–1140 (2008). ArticleGoogle Scholar
- Wright, I. J. et al. The worldwide leaf economics spectrum. Nature428, 821–827 (2004). ArticleCASPubMedGoogle Scholar
- Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA94, 13730–13734 (1997). ArticleCASPubMedPubMed CentralGoogle Scholar
- Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA110, 6895–6900 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
- Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol.26, 119–188 (2020). ArticlePubMedGoogle Scholar
- Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ4, e2615v2612 (2016). Google Scholar
- Díaz, S. et al. The global spectrum of plant form and function. Nature529, 167–171 (2016). ArticlePubMedCASGoogle Scholar
- Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ.158, 15–27 (2015). ArticleGoogle Scholar
- Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia180, 951–959 (2016). ArticlePubMedGoogle Scholar
- Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans.41, 1347–1354 (2003). ArticleGoogle Scholar
- Féret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ.193, 204–215 (2017). ArticleGoogle Scholar
- Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf.92, 102174 (2020). Google Scholar
- Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).
- Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature403, 853–858 (2000). ArticleCASPubMedGoogle Scholar
- Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodohttps://doi.org/10.5281/zenodo.3261807 (2016).
- Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc.15, 20 (2010). ArticleGoogle Scholar
- Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun.6, 10122 (2015).
- Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science348, 336–340 (2015). ArticleCASPubMedGoogle Scholar
- Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems1, 6–18 (1998). ArticleGoogle Scholar
- MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature494, 86–89 (2013). ArticleCASPubMedGoogle Scholar
- Duncan, B. N. et al. Space‐based observations for understanding changes in the Arctic‐Boreal Zone. Rev. Geophys.58, e2019RG000652 (2020). ArticleGoogle Scholar
- Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA71, 76–83 (2007). ArticleGoogle Scholar
- Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform.57, 101064 (2020). ArticleGoogle Scholar
- Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA112, 9058 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
- Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol.543, 818–831 (2016).
- Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol.53, 625–635 (2016). ArticleGoogle Scholar
- Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol.9, 1799–1809 (2018). ArticleGoogle Scholar
- Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science361, 1108–1111 (2018). ArticleCASPubMedGoogle Scholar
- Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol.27, 615–624 (2013). ArticlePubMedGoogle Scholar
- Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl.25, 2285–2292 (2015). ArticlePubMedGoogle Scholar
- Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc.92, 1539–1569 (2017). ArticlePubMedGoogle Scholar
- Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens.166, 15–25 (2020). ArticleGoogle Scholar
- Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol.22, 1421–1432 (2016). ArticleGoogle Scholar
- van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol.4, 1602–1611 (2020). ArticlePubMedGoogle Scholar
- Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol.5, 46–54 (2021). ArticlePubMedGoogle Scholar
- Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B288, 20211290 (2021). ArticlePubMedPubMed CentralGoogle Scholar
- Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett.12, 443–451 (2009). ArticlePubMedGoogle Scholar
- Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature413, 591–596 (2001). ArticleCASPubMedGoogle Scholar
- Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol.3, 1533–1538 (2019). ArticlePubMedGoogle Scholar
- Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).
- Kühl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth3, 462–474 (2020). ArticleGoogle Scholar
- Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic.57, 395–408 (2015). ArticleGoogle Scholar
- Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract.3, e533 (2021). Google Scholar
- Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science349, 827–832 (2015). ArticleCASPubMedGoogle Scholar
- Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA110, 7978–7985 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
- McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA107, 7823–7828 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
- Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev.141, 52–64 (2016). ArticleGoogle Scholar
- Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol.27, 136–150 (2021). ArticleGoogle Scholar
- Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol.5, 273–284 (2021). ArticlePubMedGoogle Scholar
- Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res.39, 125–159 (2014).
- Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev.13, 5425–5464 (2020). ArticleCASGoogle Scholar
- Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain.5, 433–437 (2013). ArticlePubMedPubMed CentralGoogle Scholar
- Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett.14, 055003 (2019). ArticleGoogle Scholar
- Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science371, eabe8628 (2021). ArticleCASPubMedGoogle Scholar
- Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science369, eaay4497 (2020).
- Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev.114, 443–455 (2020). ArticleGoogle Scholar
- Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy67, 315–326 (2017). ArticleGoogle Scholar
- Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc.21, 20 (2016).
- Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA116, 1213 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
- Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene12, 29–41 (2015). ArticleGoogle Scholar
- Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ.152, 425–447 (2016). ArticleGoogle Scholar
- Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv.51, 101344 (2021). ArticlePubMedPubMed CentralGoogle Scholar
- Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).
- Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct.60, 102285 (2021). ArticleGoogle Scholar
- Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature585, 551–556 (2020). ArticlePubMedCASGoogle Scholar
- Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain.3, 795–798 (2020). ArticleGoogle Scholar
- Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA118, e1919913118 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
- Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ.247, 111930 (2020). ArticleGoogle Scholar
- Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr.68, 121–149 (1998). ArticleGoogle Scholar
- Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol.183, 992 (2009). ArticleCASGoogle Scholar
- Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B369, 20130194 (2014). ArticleGoogle Scholar
- Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol.30, 357–363 (2015). ArticlePubMedGoogle Scholar
- Cline, L. C. et al. Resource availability underlies the plant–fungal diversity relationship in a grassland ecosystem. Ecology99, 204–216 (2018). ArticlePubMedGoogle Scholar
- Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science304, 1629–1633 (2004). ArticleCASPubMedGoogle Scholar
- Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA105, 19780–19785 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
- Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens.12, 286 (2020).
- Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl.24, 1651–1669 (2014). ArticleGoogle Scholar
- Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep.10, 6725 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
- van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol.205, 1406–1423 (2015). ArticlePubMedCASGoogle Scholar
- Meireles, J. E., O’Meara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155–172 (Springer, 2020).
- Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica56, 455–467 (2018). ArticleCASGoogle Scholar
- Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).
- Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).
- Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens.41, 191–202 (2015). ArticleGoogle Scholar
- Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems5, e00803–e00819 (2020).
- King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol.19, 75–84 (2011). ArticleCASPubMedGoogle Scholar
- Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57–68 (Elsevier, 2019).
- Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology85, 2215–2229 (2004). ArticleGoogle Scholar
- Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett.11, 1065–1071 (2008). ArticlePubMedGoogle Scholar
- Paneque-Gálvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio47, 908–923 (2018). ArticlePubMedPubMed CentralGoogle Scholar
- Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986–2014. Telecommun. Policy40, 567–581 (2016). ArticleGoogle Scholar
- Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf.8, 261 (2019).
- Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain.1, 369–374 (2018). ArticleGoogle Scholar
- Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol.3, 51–62 (2020). Google Scholar
- Carrino, T. A., Crósta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf.64, 287–300 (2018). Google Scholar
- Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens.128, 146–157 (2017). ArticleGoogle Scholar
- Turner, W. Sensing biodiversity. Science346, 301–302 (2014). ArticleCASPubMedGoogle Scholar
- Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process.10, 1 (2021).
- Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ.239, 111626 (2020). ArticleGoogle Scholar
- Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519–526 (Springer, 2020).
- Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv.8, 212–219 (2016). ArticleGoogle Scholar
- Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett.15, 115006 (2020). ArticleGoogle Scholar
- Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.37, 4302–4315 (2017). ArticleGoogle Scholar
- Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ.65, 227–248 (1998). ArticleGoogle Scholar
- Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 mhttps://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).
- Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences17, 405–422 (2020). ArticleCASGoogle Scholar
- Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ.222, 204–214 (2019). ArticleGoogle Scholar
- Crameri, F. Scientific colour-maps. Zenodohttps://doi.org/10.5281/zenodo.1287763 (2018).
- Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing11, 2563 (2019).
- Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol.3, 390–399 (2019). ArticlePubMedGoogle Scholar
- Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci.116, G04021 (2011).
- Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr.29, 1034–1051 (2020). ArticlePubMedPubMed CentralGoogle Scholar
- Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience51, 933–938 (2001). ArticleGoogle Scholar
- Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data5, 180214 (2018). ArticlePubMedPubMed CentralGoogle Scholar
- Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA117, 9906 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
- Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic.70, 317–339 (2016). ArticleGoogle Scholar
- Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun.8, 1441 (2017). ArticlePubMedPubMed CentralCASGoogle Scholar
- Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform.5, 318–329 (2010). ArticleGoogle Scholar
- Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earth’s interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).
- Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett.23, 370–380 (2020). ArticlePubMedGoogle Scholar
- Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ.231, 111218 (2019). ArticleGoogle Scholar
- Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl.24, 1289–1296 (2014). ArticlePubMedGoogle Scholar
- Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens.1, 100002 (2020). ArticleGoogle Scholar
- Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot.58, 881–898 (2007). ArticleCASPubMedGoogle Scholar
- Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun.10, 4757 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
- Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol.1, 0194 (2017).
- Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv.182, 173–176 (2015). ArticleGoogle Scholar
- Pereira, H. M. et al. Essential biodiversity variables. Science339, 277–278 (2013). ArticleCASPubMedGoogle Scholar
- Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol.3, 539–551 (2019). ArticlePubMedGoogle Scholar
- Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol.2, 1531–1540 (2018). ArticlePubMedGoogle Scholar
- Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev.93, 600–625 (2018). ArticlePubMedGoogle Scholar
- Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science348, aaa2478 (2015). ArticlePubMedCASGoogle Scholar
- Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr.18, 543–552 (2009). ArticleGoogle Scholar
- Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol.29, 681–691 (2014). ArticlePubMedGoogle Scholar
- Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255–266 (Springer International Publishing, 2020).
- Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep.11, 16448 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
- Papeş, M., Tupayachi, R., Martínez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci.21, 342–354 (2010). ArticleGoogle Scholar
- Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ.221, 405–416 (2019). ArticleGoogle Scholar
Acknowledgements
We are presenters at the World Biodiversity Symposia on Earth Observations and Biodiversity. The World Biodiversity Forum held 23–28 February 2020 in Davos (Switzerland) brought together biodiversity scientists and remote sensing experts to address these questions, through the National Aeronautics and Space Administration (NASA) symposium on Using Earth Observations to Understand Changes in Biodiversity and Ecosystem Function (NASA NNH19ZDA001N-TWSC) and the ESA-supported symposium Remote Sensing for Biodiversity Monitoring. Further support was provided by the NSF RCN project Cross-Scale Processes Impacting Biodiversity (DEB-1745562), NSF BII ASCEND (DBI-2021898), NSF DEB-1702379, NSF DEB-1638720, NASA Biodiversity (0048NNH20ZDA001N, 20-BIODIV20-0048, 20-ECOF20-0008), NASA BioSCape (80NSSC21K0086), NASA-CMS (80NSSC17K0710, 80NSSC21K1059), NASA-IDS (80NSSC17K0348) and the NASA Ecological Forecasting Team Applied Sciences Program (80NSSC19K0205). The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, was under a contract with NASA (80NM0018D0004). Government sponsorship is acknowledged. The research conducted at the University of Zurich was supported by the University Research Priority Program in Global Change and Biodiversity. The GOSIF GPP product was obtained from http://globalecology.unh.edu. The artwork in Fig. 1 was drawn by D. Tschanz.
Author information
Authors and Affiliations
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA Jeannine Cavender-Bares
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Fabian D. Schneider & David Schimel
- Department of Geography, University of Zurich, Zurich, Switzerland Maria João Santos
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA Amanda Armstrong & Lola Fatoyinbo
- Department of Biology, Ph.D. Program in Biology, City University of New York and The Graduate Center of CUNY, New York City, NY, USA Ana Carnaval
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA Kyla M. Dahlin
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA George C. Hurtt
- Department of Forest and Wildlife Ecology, Univ. of Wisconsin-Madison, Madison, WI, USA Philip A. Townsend
- Department of Land, Air and Water Resources and the John Muir Institute of the Environment, University of California, Davis, CA, USA Susan L. Ustin
- Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, China Zhihui Wang
- Department of Geography, University at Buffalo, Buffalo, NY, USA Adam M. Wilson
- Jeannine Cavender-Bares